New 'SLICE' Tool Can Massively Expand Immune System's Cancer-Fighting Repertoire

The new CRISPR-based system will open the door to next-generation targeted immunotherapies

By Jason Alvarez | UCSF.edu | November 15, 2018

Immunotherapy can cure some cancers that until fairly recently were considered fatal. In addition to developing drugs that boost the immune system’s cancer-fighting abilities, scientists are becoming expert at manipulating a patient’s own immune cells, turning them into cancer-killing armies. But cancers have tricks to evade attack, so scientists are racing to outmaneuver cancer and boost the effectiveness of immune cell therapies. Today’s scientists are skilled immune system engineers, but they’re working off of an incomplete blueprint: while they know a great deal about how to reprogram immune cell pathways, they often can’t determine precisely which circuits they should rewire in order to fabricate a more potent immune system.

Now, UC San Francisco researchers have devised a CRISPR-based system called SLICE, which will allow scientists to rapidly assess the function of each and every gene in “primary” immune cells — those drawn directly from patients. The new method, described in the Nov. 15 issue of Cell, provides researchers with a powerful tool that will guide their decision-making when determining how best to engineer immune cells to fight cancer and a host of other diseases. 

Alex Marson sitting down.
Alex Marson, MD, PhD, co-senior author of the study.

“SLICE allows us to perform genome-wide screens in which we mutate every gene in the genome to see which genes have the biggest effect on the cellular behavior we’re interested in,” explained Alex Marson, MD, PhD, associate professor of microbiology and immunology at UCSF and co-senior author of the new study. “We change one gene at a time in each cell and see which change causes the cell to do what we want it to do. SLICE is the discovery engine that will point us towards pathways that we can reprogram to generate the most effective next-generation cell therapies.” 

SLICE Finds Genes That Ramp Up Cancer-Killing Immune Activity

As a proof of principle, the researchers tested whether they could use SLICE to identify genes that make T cells — a common type of immune cell — replicate more effectively. This is especially important for cancer immunotherapy, which employs artificially stimulated and engineered T cells to kill cancer. So far, these therapies have only been effective against certain malignancies, but scientists believe that identifying genes that promote T cell proliferation can make cancer immunotherapy available to a wider range of patients.

Using SLICE, the researchers were able to identify genes that promote T cell replication, and others that suppress it. Though some of these genes had been previously characterized using other discovery methods, many were entirely new, demonstrating that SLICE could reveal key regulators of proliferation that other methods failed to capture.

 

 

Read more at UCSF.edu