Machine learning clustering of adult spinal deformity patients identifies four prognostic phenotypes: a multicenter prospective cohort analysis with single surgeon external validation.

Author List
Mohanty S, Hassan FM, Lenke LG, Lewerenz E, Passias PG, Klineberg EO, Lafage V, Smith JS, Hamilton DK, Gum JL, Lafage R, Mullin J, Diebo B, Buell TJ, Kim HJ, Kebaish K, Eastlack R, Daniels AH, Mundis G, Hostin R, Protopsaltis TS, Hart RA, Gupta M, Schwab FJ, Shaffrey CI, Ames CP, Burton D, Bess S, International Spine Study Group
Publication ID (Profile URL)
https://researcherprofiles.org/profile/482523545
Publication Year
2024
PubMed ID
38365004
Publication Title
Mohanty S, Hassan FM, Lenke LG, Lewerenz E, Passias PG, Klineberg EO, Lafage V, Smith JS, Hamilton DK, Gum JL, Lafage R, Mullin J, Diebo B, Buell TJ, Kim HJ, Kebaish K, Eastlack R, Daniels AH, Mundis G, Hostin R, Protopsaltis TS, Hart RA, Gupta M, Schwab FJ, Shaffrey CI, Ames CP, Burton D, Bess S, International Spine Study Group. Machine learning clustering of adult spinal deformity patients identifies four prognostic phenotypes: a multicenter prospective cohort analysis with single surgeon external validation. Spine J. 2024 Jun; 24(6):1095-1108.