Research Summary

John Kurhanewicz, PhD is a Professor in Residence in the Departments of Radiology and Biomedical Imaging, Urology and Pharmaceutical Chemistry at University of California, San Francisco, and a member of the California Institute for Quantitative Biology and UCSF Cancer Center, and faculty in the UCSF-UCB Bioengineering Graduate Group. He is the Director of the UCSF Body Research Interest Group, the Biomedical NMR lab, and the Kurhanewicz Laboratory at UCSF. Dr. Kurhanewicz received his BS in Chemistry from the University of South Florida/New College in 1982, and obtained his PhD in Physical Organic Chemistry from the University of South Florida, Tampa in 1987, followed by a postdoctoral fellowship in MRI/MRS from the University of California, San Francisco in 1990.

Dr. Kurhanewicz and his colleagues have developed a large prostate cancer imaging program at UCSF, involving the application of advanced magnetic resonance imaging techniques (metabolic, diffusion and perfusion weighted MRI) to provide a more accurate assessment of the extent and aggressiveness of prostate cancer in individual patients. This multiparametric 1H MRI prostate cancer staging exam is currently being used to help over a 1,000 men diagnosed with prostate cancer a year at UCSF to decide on their best therapeutic course. He is also currently involved in the development and clinical translation of an extraordinary new molecular imaging technique utilizing hyperpolarized 13C labeled metabolic substrates that has the potential to revolutionize the way MR imaging is used in the risk assessment of prostate cancer patients. He led the first clinical trial of this technology at UCSF and is involved in three ongoing clinical trials investigating its clinical utility.

Dr. Kurhanewicz has published over 230 peer-reviewed manuscripts and19 book chapters, and has been cited 16,089 times (citation indices: h-index of 69, i10-index - 180). He is a member of 7 scientific societies, serves on numerous scientific review panels for the National Institute of Health, Department of Defense and American Cancer Society and reviews for over 20 different journals. He has 25 years of mentoring in the areas of advanced MR cancer imaging and molecular imaging, and has mentored over 120 graduate and under-graduate students, medical fellows and junior faculty.

Research Funding

  • September 7, 2020 - August 31, 2025 - Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI , Principal Investigator . Sponsor: NIH, Sponsor Award ID: U24CA253377
  • September 1, 2017 - July 31, 2022 - Metabolic imaging comparisons of patient-derived models of renal cell carcinoma , Principal Investigator . Sponsor: NIH, Sponsor Award ID: U01CA217456
  • June 1, 2017 - May 31, 2022 - Targeting Neuroendocrine Prostate Cancer Using Multi-Probe Hyperpolarized 13C MRI for Improved Treatment and Therapeutic Monitoring , Principal Investigator . Sponsor: NIH, Sponsor Award ID: R01CA215694
  • April 15, 2021 - April 14, 2022 - High Field MRI For Optimized Translational 1H Multiparametric and Multinuclear Imaging Research , Principal Investigator . Sponsor: NIH, Sponsor Award ID: S10OD030256

Education

New College, Sarasota, FL, B.S., 1976-1982, Chemistry
University of South Florida, Tampa, FL, Ph.D., 1982-1987, Chemistry
University of California San Francisco, CA, Post-Doc., 1987-1990, In vivo Spectroscopy

Honors & Awards

  • Phi Beta Kappa (scholastic honorary)
  • Outstanding Chemistry Alumnus, University of South Florida

Selected Publications

  1. Moore SM, Quirk JD, Lassiter AW, Laforest R, Ayers GD, Badea CT, Fedorov AY, Kinahan PE, Holbrook M, Larson PEZ, Sriram R, Chenevert TL, Malyarenko D, Kurhanewicz J, Houghton AM, Ross BD, Pickup S, Gee JC, Zhou R, Gammon ST, Manning HC, Roudi R, Daldrup-Link HE, Lewis MT, Rubin DL, Yankeelov TE, Shoghi KI. Co-Clinical Imaging Metadata Information (CIMI) for Cancer Research to Promote Open Science, Standardization, and Reproducibility in Preclinical Imaging. Tomography. 2023 05 11; 9(3):995-1009.  View on PubMed
  2. Sahin SI, Ji X, Agarwal S, Sinha A, Mali I, Gordon JW, Mattingly M, Subramaniam S, Kurhanewicz J, Larson PEZ, Sriram R. Metabolite-Specific Echo Planar Imaging for Preclinical Studies with Hyperpolarized 13C-Pyruvate MRI. Tomography. 2023 03 27; 9(2):736-749.  View on PubMed
  3. Peehl DM, Badea CT, Chenevert TL, Daldrup-Link HE, Ding L, Dobrolecki LE, Houghton AM, Kinahan PE, Kurhanewicz J, Lewis MT, Li S, Luker GD, Ma CX, Manning HC, Mowery YM, O'Dwyer PJ, Pautler RG, Rosen MA, Roudi R, Ross BD, Shoghi KI, Sriram R, Talpaz M, Wahl RL, Zhou R. Animal Models and Their Role in Imaging-Assisted Co-Clinical Trials. Tomography. 2023 03 16; 9(2):657-680.  View on PubMed
  4. Agudelo JP, Upadhyay D, Zhang D, Zhao H, Nolley R, Sun J, Agarwal S, Bok RA, Vigneron DB, Brooks JD, Kurhanewicz J, Peehl DM, Sriram R. Multiparametric Magnetic Resonance Imaging and Metabolic Characterization of Patient-Derived Xenograft Models of Clear Cell Renal Cell Carcinoma. Metabolites. 2022 Nov 15; 12(11).  View on PubMed
  5. Chen HY, Bok RA, Cooperberg MR, Nguyen HG, Shinohara K, Westphalen AC, Wang ZJ, Ohliger MA, Gebrezgiabhier D, Carvajal L, Gordon JW, Larson PEZ, Aggarwal R, Kurhanewicz J, Vigneron DB. Improving multiparametric MR-transrectal ultrasound guided fusion prostate biopsies with hyperpolarized <sup>13</sup> C pyruvate metabolic imaging: A technical development study. Magn Reson Med. 2022 12; 88(6):2609-2620.  View on PubMed
  6. Liu X, Tang S, Mu C, Qin H, Cui D, Lai YC, Riselli AM, Delos Santos R, Carvajal L, Gebrezgiabhier D, Bok RA, Chen HY, Flavell RR, Gordon JW, Vigneron DB, Kurhanewicz J, Larson PEZ. Development of specialized magnetic resonance acquisition techniques for human hyperpolarized [13 C,15 N2 ]urea + [1-13 C]pyruvate simultaneous perfusion and metabolic imaging. Magn Reson Med. 2022 09; 88(3):1039-1054.  View on PubMed
  7. de Kouchkovsky I, Chen HY, Ohliger MA, Wang ZJ, Bok RA, Gordon JW, Larson PEZ, Frost M, Okamoto K, Cooperberg MR, Kurhanewicz J, Vigneron DB, Aggarwal R. Hyperpolarized 1-[13C]-Pyruvate Magnetic Resonance Imaging Detects an Early Metabolic Response to Immune Checkpoint Inhibitor Therapy in Prostate Cancer. Eur Urol. 2022 02; 81(2):219-221.  View on PubMed
  8. Gibbons M, Starobinets O, Simko JP, Kurhanewicz J, Carroll PR, Noworolski SM. Identification of prostate cancer using multiparametric MR imaging characteristics of prostate tissues referenced to whole mount histopathology. Magn Reson Imaging. 2022 01; 85:251-261.  View on PubMed
  9. Geng H, Tsang M, Subbaraj L, Cleveland J, Chen L, Lu M, Sharma J, Vigneron DB, Kurhanewicz J, LaFontaine M, Luks T, Barshop BA, Gangoiti J, Villanueva-Meyer JE, Rubenstein JL. Tumor metabolism and neurocognition in CNS lymphoma. Neuro Oncol. 2021 10 01; 23(10):1668-1679.  View on PubMed
  10. Qin H, Tang S, Riselli AM, Bok RA, Delos Santos R, van Criekinge M, Gordon JW, Aggarwal R, Chen R, Goddard G, Zhang CT, Chen A, Reed G, Ruscitto DM, Slater J, Sriram R, Larson PEZ, Vigneron DB, Kurhanewicz J. Clinical translation of hyperpolarized 13 C pyruvate and urea MRI for simultaneous metabolic and perfusion imaging. Magn Reson Med. 2022 01; 87(1):138-149.  View on PubMed
  11. Lee PM, Chen HY, Gordon JW, Zhu Z, Larson PEZ, Dwork N, Van Criekinge M, Carvajal L, Ohliger MA, Wang ZJ, Xu D, Kurhanewicz J, Bok RA, Aggarwal R, Munster PN, Vigneron DB. Specialized computational methods for denoising, B1 correction, and kinetic modeling in hyperpolarized 13 C MR EPSI studies of liver tumors. Magn Reson Med. 2021 11; 86(5):2402-2411.  View on PubMed
  12. McGee KP, Hwang KP, Sullivan DC, Kurhanewicz J, Hu Y, Wang J, Li W, Debbins J, Paulson E, Olsen JR, Hua CH, Warner L, Ma D, Moros E, Tyagi N, Chung C. Magnetic resonance biomarkers in radiation oncology: The report of AAPM Task Group 294. Med Phys. 2021 Jul; 48(7):e697-e732.  View on PubMed
  13. Sun J, Bok RA, DeLos Santos J, Upadhyay D, DeLos Santos R, Agarwal S, Van Criekinge M, Vigneron DB, Aggarwal R, Peehl DM, Kurhanewicz J, Sriram R. Resistance to Androgen Deprivation Leads to Altered Metabolism in Human and Murine Prostate Cancer Cell and Tumor Models. Metabolites. 2021 Feb 26; 11(3).  View on PubMed
  14. Ahamed F, Van Criekinge M, Wang ZJ, Kurhanewicz J, Larson P, Sriram R. Modeling hyperpolarized lactate signal dynamics in cells, patient-derived tissue slice cultures and murine models. NMR Biomed. 2021 03; 34(3):e4467.  View on PubMed
  15. Fendler WP, Calais J, Eiber M, Simko JP, Kurhanewicz J, Santos RD, Feng FY, Reiter RE, Rettig MB, Nickols NG, Kishan AU, PSMA PET Reader Group, Slavik R, Carroll PR, Lawhn-Heath C, Herrmann K, Czernin J, Hope TA. False positive PSMA PET for tumor remnants in the irradiated prostate and other interpretation pitfalls in a prospective multi-center trial. Eur J Nucl Med Mol Imaging. 2021 02; 48(2):501-508.  View on PubMed
  16. Chen HY, Autry AW, Brender JR, Kishimoto S, Krishna MC, Vareth M, Bok RA, Reed GD, Carvajal L, Gordon JW, van Criekinge M, Korenchan DE, Chen AP, Xu D, Li Y, Chang SM, Kurhanewicz J, Larson PEZ, Vigneron DB. Tensor image enhancement and optimal multichannel receiver combination analyses for human hyperpolarized 13 C MRSI. Magn Reson Med. 2020 12; 84(6):3351-3365.  View on PubMed
  17. Qin H, Zhang V, Bok RA, Santos RD, Cunha JA, Hsu IC, Santos Bs JD, Lee JE, Sukumar S, Larson PEZ, Vigneron DB, Wilson DM, Sriram R, Kurhanewicz J. Simultaneous Metabolic and Perfusion Imaging Using Hyperpolarized 13C MRI Can Evaluate Early and Dose-Dependent Response to Radiation Therapy in a Prostate Cancer Mouse Model. Int J Radiat Oncol Biol Phys. 2020 08 01; 107(5):887-896.  View on PubMed
  18. Crane JC, Gordon JW, Chen HY, Autry AW, Li Y, Olson MP, Kurhanewicz J, Vigneron DB, Larson PEZ, Xu D. Hyperpolarized 13 C MRI data acquisition and analysis in prostate and brain at University of California, San Francisco. NMR Biomed. 2021 05; 34(5):e4280.  View on PubMed
  19. Sriram R, Van Criekinge M, DeLos Santos J, Ahamed F, Qin H, Nolley R, Santos RD, Tabatabai ZL, Bok RA, Keshari KR, Vigneron DB, Peehl DM, Kurhanewicz J. Elevated Tumor Lactate and Efflux in High-grade Prostate Cancer demonstrated by Hyperpolarized 13C Magnetic Resonance Spectroscopy of Prostate Tissue Slice Cultures. Cancers (Basel). 2020 Feb 26; 12(3).  View on PubMed
  20. Chen HY, Aggarwal R, Bok RA, Ohliger MA, Zhu Z, Lee P, Gordon JW, van Criekinge M, Carvajal L, Slater JB, Larson PEZ, Small EJ, Kurhanewicz J, Vigneron DB. Hyperpolarized 13C-pyruvate MRI detects real-time metabolic flux in prostate cancer metastases to bone and liver: a clinical feasibility study. Prostate Cancer Prostatic Dis. 2020 06; 23(2):269-276.  View on PubMed

Go to UCSF Profiles, powered by CTSI