University of California San Francisco
Helen Diller Family Comprehensive Cancer Center
David O. Morgan, PhD, FRS

David O. Morgan, PhD, FRS

Professor, Department of Physiology; Vice Dean for Research, School of Medicine, UCSF
Jack D. and De Loris Lange Chair in Physiology, UCSF

Cancer Center Program Memberships

Affiliate Member

Research Summary

My work focuses on a fundamental biological problem: understanding the regulatory system that guides the eukaryotic cell through the stages of the cell division cycle. My laboratory studies this problem primarily in the budding yeast Saccharomyces cerevisiae, but my findings have broad significance for human diseases, such as cancer, that arise from defects in cell proliferation or chromosome behavior. The research strategy of my laboratory is to use quantitative biochemical analysis to understand the detailed mechanisms of key enzymes involved in cell cycle control. We also use molecular genetics, proteomics, advanced light microscopy, and computational methods to explore how these enzymes are assembled into a robust regulatory system that drives accurate cell cycle progression and chromosome segregation.

Education

University of Calgary, Canada, B.Sc. (Hon.), 1980, Animal Biology
University of California San Francisco, Ph.D., 1986, Endocrinology
University of California San Francisco, Post-Doc, 1986-1989, Biochemistry

Honors & Awards

  • 1987-1989
    Helen Hay Whitney Foundation Postdoctoral Fellowship
  • 1990-1993
    Searle Scholar Award
  • 1990-1992
    March of Dimes Basil O'Connor Starter Scholar Award
  • 1991-1996
    Rita Allen Foundation Scholar Award
  • 2007-present
    Jack D. and DeLoris Lange Endowed Chair in Physiology
  • 1997, 2003, 2006, 2008, 2010, 2012
    UCSF Medical School Teaching Award for Outstanding Lecture Series
  • 2010
    UCSF Kaiser Award for Excellence in Teaching in the Classroom Setting
  • 2010
    UCSF Graduate Students Association Outstanding Faculty Mentorship Award
  • 2011
    MERIT award, NIGMS
  • 2012
    Fellow, Royal Society of London

Selected Publications

  1. Mizrak A, Morgan DO. Polyanions provide selective control of APC/C interactions with the activator subunit. Nat Commun. 2019 12 20; 10(1):5807.
    View on PubMed
  2. Rosen LE, Klebba JE, Asfaha JB, Ghent CM, Campbell MG, Cheng Y, Morgan DO. Cohesin cleavage by separase is enhanced by a substrate motif distinct from the cleavage site. Nat Commun. 2019 11 15; 10(1):5189.
    View on PubMed
  3. Qin L, Mizrak A, Guimarães DSPSF, Tambrin HM, Morgan DO, Hall MC. The pseudosubstrate inhibitor Acm1 inhibits the anaphase-promoting complex/cyclosome by combining high-affinity activator binding with disruption of Doc1/Apc10 function. J Biol Chem. 2019 11 15; 294(46):17249-17261.
    View on PubMed
  4. Seoane AI, Morgan DO. Firing of Replication Origins Frees Dbf4-Cdc7 to Target Eco1 for Destruction. Curr Biol. 2017 Sep 25; 27(18):2849-2855.e2.
    View on PubMed
  5. Davey NE, Morgan DO. Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. Mol Cell. 2016 10 06; 64(1):12-23.
    View on PubMed
  6. Lu D, Girard JR, Li W, Mizrak A, Morgan DO. Quantitative framework for ordered degradation of APC/C substrates. BMC Biol. 2015 Nov 16; 13:96.
    View on PubMed
  7. Girard JR, Tenthorey JL, Morgan DO. An E2 accessory domain increases affinity for the anaphase-promoting complex and ensures E2 competition. J Biol Chem. 2015 Oct 02; 290(40):24614-25.
    View on PubMed
  8. Lu D, Hsiao JY, Davey NE, Van Voorhis VA, Foster SA, Tang C, Morgan DO. Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. J Cell Biol. 2014 Oct 13; 207(1):23-39.
    View on PubMed
  9. Eshleman HD, Morgan DO. Sgo1 recruits PP2A to chromosomes to ensure sister chromatid bi-orientation during mitosis. J Cell Sci. 2014 Nov 15; 127(Pt 22):4974-83.
    View on PubMed
  10. Van Voorhis VA, Morgan DO. Activation of the APC/C ubiquitin ligase by enhanced E2 efficiency. Curr Biol. 2014 Jul 07; 24(13):1556-62.
    View on PubMed
  11. Naylor SG, Morgan DO. Cdk1-dependent phosphorylation of Iqg1 governs actomyosin ring assembly prior to cytokinesis. J Cell Sci. 2014 Mar 01; 127(Pt 5):1128-37.
    View on PubMed
  12. Morgan DO. The D box meets its match. Mol Cell. 2013 Jun 06; 50(5):609-10.
    View on PubMed
  13. Foster SA, Morgan DO. The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol Cell. 2012 Sep 28; 47(6):921-32.
    View on PubMed
  14. Yaakov G, Thorn K, Morgan DO. Separase biosensor reveals that cohesin cleavage timing depends on phosphatase PP2A(Cdc55) regulation. Dev Cell. 2012 Jul 17; 23(1):124-36.
    View on PubMed
  15. Foe IT, Foster SA, Cheung SK, DeLuca SZ, Morgan DO, Toczyski DP. Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism. Curr Biol. 2011 Nov 22; 21(22):1870-7.
    View on PubMed
  16. Schaefer JB, Morgan DO. Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J Biol Chem. 2011 Dec 30; 286(52):45186-96.
    View on PubMed
  17. Kõivomägi M, Valk E, Venta R, Iofik A, Lepiku M, Morgan DO, Loog M. Dynamics of Cdk1 substrate specificity during the cell cycle. Mol Cell. 2011 Jun 10; 42(5):610-23.
    View on PubMed
  18. Lyons NA, Morgan DO. Cdk1-dependent destruction of Eco1 prevents cohesion establishment after S phase. Mol Cell. 2011 May 06; 42(3):378-89.
    View on PubMed
  19. Rodrigo-Brenni MC, Foster SA, Morgan DO. Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin. Mol Cell. 2010 Aug 27; 39(4):548-59.
    View on PubMed
  20. Morgan DO. The hidden rhythms of the dividing cell. Cell. 2010 Apr 16; 141(2):224-6.
    View on PubMed

Go to UCSF Profiles, powered by CTSI